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Abstract

In this paper, we examine the effectiveness of absorbing layers as non-reflecting com-

putational boundaries for the Euler equations. The absorbing-layer equations are simply

obtained by splitting the governing equations in the coordinate directions and introducing

absorption coefficients in each split equation. This methodology is similar to that used by

Berenger for the numerical solutions of Maxwell's equations. Specifically, we apply this

methodology to three physical problems shock-vortex interactions, a. plane free shear flow

and an axisymmetric jet. with emphasis on acoustic wave propagation. Our numerical

results indicate that the use of absorbing layers effectively minimizes numerical reflection in

all three problems considered.
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1. Introduction

The proper treatment of computational boundaries is crucial for any numerical solution to

a set of partial differential equations which governs fluid motion or wave prol)agation in a

medium. Various techniques have been developed to mininfize the reflection of out-going

waves. A review can be found in Givoli (1991). Numerical boundary conditions based oil

tile characteristics of the relevant linearized equations and their asymptotic solutions in the

far field have been widely used. However, such boundary conditions are not satisfactory' if

the outflow is nonlinear or involves multi-directional waves. As a possible remedy, a buffer

zone abutting the computational boundary, in which the governing equations are modified,

and whose role is to absorb the incident waves, has been proposed. In this buffer zone. the

modifications have the effect of either removing or damping reflected waves oriented back

towards the computational domain. Naturally, the buffer zone solutions themselves need not

necessarily be physical, and they serve only to prevent contamination of the solution in the

physical domain of interest by the reflections from the computational boundaries. Various

types of buffer zone techniques have been used in flow simulations. For example, Colonius

et a1.(1993) used buffer zones in which tile solutions were fltered. In a different approach,

Ta'asan and Nark (1995) modified the governing equations ill the buffer zone to change the

orientation of the characteristics, and make the flow supersonic at. the exit plane. Recently,

Berenger(1994) proposed a. very effective Pc,f_:ctly Matche:d Laycr technique for Maxwell's

equations. In this approach, the equations governing the so-called matched layer are split.

into subcomponents with damping terms which absorb the incident waves almost perfectly.

Following Berenger, Hu (1996), developed an analogous technique for the linearized Euler

equations, and provided analytical results for the case of uniform flow.

In this paper, we follow the operator splitting principle of Berenger (1994) and Hu (1996)

for the equations governing what. we call the absorbing layers and examine their effectiveness

in the case of shock-vorticity wave interactions, a plane free-shear layer and an axisymmetric

jet. The emphasis is on the effectiveness of the the computational houndaries in handling

wave propagation including sound waves. It is shown that the a.I)sorl)ing layer technique is

very effective for all three physical problems. Tile next section describes briefly the numerical

models used in this study, followed by the section on results and conchMon.

2. Numerical Models

2.1 Shock Wave Interactions

To verify the applicability of the absorbing houndary condition technique to shock-turbulence

and shock-vortex interaction problems, we choose the numerical model of Erlebacher, Hus-

saint and Shu (1997). This model solves the fully nonlinear compressible Euler equations

along with a time evolution equation for the shock motion for the purpose of fitting the

shock. The outflow boundary conditions which miuimizes wave reflection back into the do-

main of computation are of crucial importance for such problems as they involve long-time



integrations. The present,casefocuseson the interaction of a singlevorticity wave with
a shock wave,and the resultsof coursecarry over simply to a randomly distributed wave
syst.em.The two dimensionalEuler equationsarewritten as
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The computational domain has the shock as a boundary on the left and an outflow

boundary on the right, and is periodic in the other direction. Fourth order Runge-Kutta

scheme is used for time integration, and the spatial derivatives are discretized by a compact

6 th order scheIne.

In the absorbing layer at the right boundary, the Euler equations are split into a lo-

cally one-dimensional set. with artificial damping terms. Consider the pressure equation, for

oxample, in computational space:

Op i)p Op 0wl Ow21

After operator splitting and addition of damping terms, the pressure equation becomes
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in the absorbing layer. Here, wl and w2 are velocity components in x- and y-directions,

al and a2 are coutravariant velocity components (which include the effect of grid motion)

in computational space, and p = Pl + P2. Locally one-dimensional equations for the other

variables are constructed in a similar manner. The damping factor _rx is zero in a layer

parallel to the X direction; similarly ay is zero in a laver parallel to the }" direction (see

Figure 1). However, in the corner region both these damping factors are positive.



2.2 Free Shear Layer

In order to evaluatethe performanceof the absorbing-layertechniquein the caseof inviscid
instability waves,we solve the linearized Euler equations in a Cartesian (x,g) coordinate
system. _ study the evolution of a Kelvin-Helmholtz instability wave as it propagates
downstreamand impingeson the al)sorbinglayers. In this case,the x-monmntum equation
reads

Ou uOu d( r 10p
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where

1 r

{T : 2 [(/[1 + /'r2) -_- ((/1 -- ('?2) tanh(9)]. Absorbing layers are used at the upper, lower and

right, boundaries. Again, the afore-mentioned operator splitting in the absorbing layer leads

to two z-momentum equations:
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where u = ul + u2. All other equations are treated similarly. These equations are solved

by a low-dissipation and low-dispersion Runge-Kutta scheme which is formally fourth order

accurate (Hu, Hussaini and Manthey, 1996).

For the nonlinear case one uses again an approximate time independent mean flow to

split the Euler equations in the absorbing layer. Thus the stream-wise velocity for two

dimensional flows is decomposed into three components:

where/-_ is the mean velocity as in the linear case. Then the x-momentum equation is written

as

O'u 1

0--[+ uu_. + vu_ + -p_ = O.
P

This equation is then split into two equations as
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All other equations in the absorbing layer are similarly derived.



2.3 Axisymmetric Jet

The compressible axisymmetric Euler equations for tile jet in the weak conservation form

are • Qt + F_ + Gr = S, where, in the linearized case,

Q)=/"
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hi the above equations, p, p, m=, m,., E denote the fluctuating components of pressure,

density, axial and radial momentum, total energy and H is the mean enthalpy. These equa-

tions have been linearized around the mean velocity ((r,., l_ ) represented by an error function

that fits experimental measurements. The interior equations are simply split into

Q, + K= = O, Qt -}- (7,. = ,q'

and they are niodified in the at)sorbing layer as
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where Q = Q_ + Q" and £' = ,q'_ + ,q2. (We used ,5'1 = 0 ill this study).

hi the nonlinear case. the vectors Q, <q',F, and (; are defined as follows.
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We use the fourth-order MacCormack method which has been successfully used in earlier

studies by Hayder et al. (1996) to solve the linearized Euler equations, and by Hayder et al.

(1993) and Mankbadi et al. (1994) to solve the Navier Stokes equations. The equations are

linearized before splitting to obtain the equatiorls for the absorbing layer. Thus, we get

(Q' - Q_)t + (F - Fo): = -Crz(Q1 - Q_o)

(Q2 _ Q_), + ((;_ Go)T = _aT(Q2 _ Q2o) + (5' - So)

where the subscript 0 denotes mean quantities.

3. Results

In the case of the shock-vorticity wave interaction, we consider specifically the following

simple wave

tl- /.71 = (U12V/22 (:o.g(lG-x Jr- kyy -- _'[1 t )

v = -eU_2v/-2,_cos(k_.z + kuy - l.qt)

p=p=T=l

as the upstream condition ahead of the shock. /71 is the upstream mean velocity normal to

the undisturbed shock, ky = k sin& k,_ = k cosO (where k is ut)stream wavenumber), and

e = 0.001 measures the intensity of the wave. Our standard interior domain is 7.4 units long

with 185 uniformly spaced grid points. W_ used 16 points on the coordinate axis parallel

to the shock. An absorbing layer abuts the right outflow boundary. We introduce dampiug

gradually in order to minimize any reflections due to the discretization in the absorbing layer.

Unless otherwise mentioned, we use 0 = 30 °, K = 2, and 25 grid points (= 1 unit in length)

in the buffer layer for our computations. A snapshot of pressure in the interior domain at

t = 20 is presented in Figure 2, which shows how well the out-going waves are a.bsorl)ed with

little reflection. To measure the contamination due to reflection, the solutions are compared

with a reference solution obtained by computing the flow in a much larger domain with the

same spatial and temporal resolution. We follow this methodology for all problems in this

study. Figure 3 compares axial variation in pressure for two different, size buffers against

the large domain solution at t = 20. Because of modifications to the governing equations,

the solution in the buffer layer is irrelevant. The solution in the interior domain for a buffer

with 25 points is visually indistinguishable from the larger domain solution. In Figure 4,

we show the rms error (E) in pressure at the ordinate four grid points upstream of the

interface between the computational domain and the absorbing layer as a flmction of the

layer thickness measured in the number of equidistant points. The error E is defined as

100 , -
E-[P',;Laa'[ V 7-_



wherepr is tile pressure from the reference solution, tpEaxI is its maximum amplitude and N

is the number of grid points in the y-direction ( N=16 in the current context). E measures

the numerical error in the solution, which includes both direct and induced errors due to the

interaction of residual reflections from the outflow boundary with the flow and the shock.

As expected, E decreases as the layer width is increased. In Figures 5 and 6, we show the

dependence of numerical errors on the angle of incidence (0) and the wave number (k). The

buffer layer is more effective at lower incidence angle and wavenumbers, although we notice

some cross-overs in our numerical experiments. At later times, a fraction of tile reflections

from the outflow boundary propagates upstream. These waves can then reflect back and

forth, and cause what we call induced errors. These sometimes constitute a significant

portion of tile errors shown in Figures 4-6 at. later times.

The results for the free-shear layer are obtained for upper and lower stream mean veloc-

ities, normalized by the speed of sound, equal to l;1 = 0.6 and U2 = 0.2 respectively. The

eigenfnnctions of the I,_elvin-Helmholtz instability wave given by the linear stability theory

are forced at the inflow, with a maxinmm amplitude _ equal to 0.01. V_ solve the linearized

Euler equations and the solution agrees with the linear theory very well in eigenfunction

and growth rate COml)arisons. In Figure 7, snapshots of axial velocity (Fig 7a) and pressure

(Fig 7b) are shown, and in Figure 8 we present the amount of reflection as a function of

the layer thickness. We observe that for 10 points in the absorbing layer, the amount of

reflection (measured four grid points away from the buffer layer boundary) is less than .03%

of the amplitude of the reference pressure fluctuation from the large domain solution. We

also solve nonlinear Euler equations where the nonlinearity in the flow is significant. The

inflow excitation amplitude (_) is kept at 0.01, but the interior domain is three times longer.

All other flow parameters are the same as in the linear case. The error in pressure four grid

points away from the buffer layer in shown in Figure 9. We needed a larger buffer layer for

the nonlinear flow simulations. At time equal to 3000, errors with 30 and 50 points in the

buffer layer were 3.5% and 4% respectively. Intuitively one expects that a buffer layer to be

more effectiw' if nonlinear effects are smaller. This may be the principal reason for larger

errors in Figure 9 compared to Figure 8. The effect of nonlinearity is also shown in Figure

10, where we compare errors for simulations with two different levels of excitation e with a

buffer of 50 grid points.

Finally, for the case of the excited axisymmetric jet, we assume the mean Mach number

to be 0.6. At the inflow, we extrapolated one characteristic variable corresponding to tile

outgoing acoustic wave from the interior and computed the other three characteristic vari-

ables at time t using [p,u,v,p] = eRe(glei_t), where 0 = [fi, fi,'b,/?] is the eigenfunction given

by the linear stability theory, t = 10 -4, W = 1.05. A snapshot of pressure is shown in Figure

11. The rms pressure error (E) in the immediate neighborhood (four points away from the

buffer layer) of the layer interface is plotted in Figure 12 for time equal to upto 50. This

error becomes quasi-periodic and the maximum error for 25 grid points in the absorbing

layer is about 0.015%. Our results for the nonlinear Euler equations are shown in Figure 13.

The domain size is 10 units long for both linearized and nonlinear Euler simulation of the

6



excitedjet. The physicalparametersare the samefor both the linearizedand the nonlinear
Euler equationsfor the jet calculations.

4. Conclusions

In conclusion, we find the performance of the absorbing-layer technique in the cases of

three physical problems (using three different numerical algorithms) is quite satisfactory.

This technique offers a viable alternative to the traditional boundary treatments based on

the linearized characteristics or asymptotic solutions in the far field, and also other types of

buffer layers. It also promises to be accurate and inexpensive for aeroacoustic computations.

Further studies are warranted to put this methodology on a firm footing.
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